the Energy to Lead

Flue Gas Water Vapor Latent Heat Recovery for Pressurized Oxy-Combustion

Project DE-FE0025350

NETL Program Manager: Steve Markovich DOE-NETL CO2 Capture Technology Meeting August 8-12, 2016 Pittsburgh, PA

Rick Knight – Institute Engineer Gas Technology Institute

Project Overview

□ Funding: \$2,648,945

- DOE = \$1,999,795. Cost share = \$649,150 (24.5%)
- Performance dates:
 - Phase I: Sep 1 2015 Aug 31 2016
 - Phase II: Sep 1 2016 Aug 31 2017

□ Participants:

- Gas Technology Institute (lead)
- Media & Process Technology
- Florida International University
- SmartBurn LLC

Project Overview

Overall Project Objectives

- Facilitate energy and water recovery to improve the efficiency of pressurized oxy-coal power boilers
- Design, build, and test a high-pressure modular version of the Transport Membrane Condenser (TMC) at pilot scale to evaluate its performance and analyze the results for future commercial-scale power plants.

- Concept: recover water of combustion along with latent heat
- Investigated 4 modes of separation:
 - Molecular Sieving
 - Knudsen diffusion
 - Surface diffusion
 - Capillary condensation
- Working mode of porous membrane is critical for water vapor separation and transport
 - ✓ High permeate flux and high separation ratio could <u>only</u> be achieved in a <u>capillary</u> <u>condensation mode</u> for water vapor.

GTI developed Transport Membrane Condenser (TMC) technology

- Nanoporous ceramic membrane selectively recovers water vapor and latent heat from natural gas combustion flue gases
 - Increases boiler efficiency and saves water, avoiding corrosive condensate
- Commercialized for gas- fired industrial boilers

NETL CO₂ Capture Technology Meeting – August 2016

- Package boilers (gas- and oil-fired)
- Non-boiler industrial applications (e.g., commercial laundry)
- Existing power plants (slipstream from coal-fired power boiler)

- ✓ Latent heat recovery can boost power generation efficiency of oxy-coal boiler by 14%
- ✓ TMC can recover clean water from flue gas equal to 2.0% of steam demand
- \checkmark No boiler modifications required
- ✓ Reduced dew point of flue gas

- ✓ Durability of TMC in flue gas with coal-derived contaminants (particulates, SO₂, and NO_x)
- ✓ Integrity of ceramic multi-tube sealing in pressurized TMC operation
- ✓ Controllability and performance

Approach/Scope

Experimental design

- Multiple TMC assemblies housed in pressure vessels, connected in parallel and/or series
- 🖵 Work plan
 - Develop and build high-pressure modular version of the TMC
 - Install TMC skid at GTI's Flex Fuel Gasification Facility
 - Gasify PRB coal, combust and condition syngas to simulate exhaust from pressurized slurry-fed oxy-coal combustion with FGD at 1-3 MW_{th} scale
 - Test TMC in combinations of series and parallel modes

Success criteria

- TMC performance conforms to model predictions
- TMC meets expectations for controllability and durability

Approach/Scope

	BUDGET PERIOD I													BUDGET PERIOD II												
	2015						2016											2017								
Tasks		S	0	Ν	D	J	F	М	Α	М	J	J	Α	S	0	ΝΙ	D	J	F	М	А	М	J	J	А	S
0.0 Pre-Award Costs																										
1.0 Project Management and Planning				М1										М2									<i>M</i> 4			
2.0 Process Modeling and Design Evaluation																										
2.1 Process Modeling for System Design													ilestenes													
2.2 CFD Simulation to Define TMC Design Parameters													116	2510	01	es	:									
3.0 TMC Unit Design, Fabrication, and Assembly for High Pressure		M1 = updated PMP										, 														
3.1 Spaced Tube Bundles Design, Fabrication and Testing																IVI.	M2 = Budget Period I Repoi									ť
3.2 High Pressure Bundle Housing Design, Fabrication and Testing		M3 = Test Readiness Rep											ер	ort	:											
3.3 TMC Unit Assembly and System Control Setup	M4 =										- Final Project Report															
4.0 Pressurized Oxy-Coal Pilot Test System Preparation																										
4.1 Feedstocks and Raw Material Preparation																										
4.2 Test System Modifications																										
4.3 Test Plan																										
5.0 Overall Test System Installation and Shakedown																										
5.1 TMC System Installation and Control Integration with Oxy-Coal Test Rig														<u>M3</u>												
5.2 System Shakedown																										
6.0 System Performance Testing for Latent Heat Recovery																										
6.1 TMC Performance Test #1																										
6.2 TMC Performance Test #2																										
6.3 Result Summary and Future Development Directions																										
7.0 Scale-Up and Integration Evaluation for Commercial Scale																										
ENTIRE PROJECT																										

Approach/Scope

RISK MITIGATION

- 1. Pilot plant availability
 - Schedule and coordinate with other tests
- 2. Subcontractor/vendor delays
 - Formalize deadlines, biweekly update
- 3. Labor cost exceeds estimates
 - Forecasting, contract labor
- 4. Steam supply
 - Dedicated steam generator for syngas burner
- 5. Tar reformer untested as burner
 - HP burner design experience, earlier start
- 6. TMC pressure seal & control
 - New high-pressure seal design, delta-P control

Task 2: Process Modeling and Design Evaluation

Task 2.1: Process Modeling for System Design and Operation

- Model for commercial reference case is a 550-MW_e slurry feed oxy-coal boiler using PRB coal with 50% moisture
- Flue gas is recirculated from downstream of FGD

Task 2: Process Modeling and Design Evaluation

Task 2.1: Process Modeling for System Design and Operation

- Developed and updated model for 2.7-MW_{th} pilot simulation of commercial case
- Coal is gasified, syngas filtered, and slipstream combusted with oxygen, CO₂, water, and steam to obtain conditioned flue gas for TMC testing
- Portion of TMC water is recycled and cooled to simulate plant water supply

Task 2: Process Modeling and Design Evaluation

Task 2.2: CFD Simulation to Define TMC Design Parameters

- Single TMC module CFD study for different tube arrangement effect
- Baffle effect has been studied, and the 3-baffle configuration shows optimum heat and mass transfer

Task 2: Process Modeling and Design Evaluation

Task 2.2: CFD Simulation to Define TMC Design Parameters

- Six TMC modules arranged into different series and parallel configurations based on flue gas flow
 - 3x2 (3 in series, 2 parallel sets)
 - 2x3 (2 in series, 3 parallel sets)

Total water side pressure

Task 3: TMC Unit Design, Fabrication, & Assembly for High Pressure

Task 3.1: Spaced tube bundles design, fabrication, and testing

Dual Ended Bundles (2" Prototypes)

- Prepared several 2"-diameter spaced dual ended bundles
- Completed 2" bundle thermal cycling in a standard stainless steel module; no thermal mismatch problems encountered
- ✓ Tested at 200°C in 200-psig saturated steam

Dual Ended Bundles (4" Pilot Scale)

- Prepared first pilot scale 4"-diameter spaced dual ended bundle
- Completed 4" bundle thermal cycling in a standard stainless steel module; no thermal mismatch problems encountered
- Adapted Teflon baffles for enhancing flue gas side heat transfer

Next Phase

✓ Prepare six 4"-diameter pilot scale bundles

4" Diameter x 36" Length Bundle w/ Teflon Baffles

Task 3: TMC Unit Design, Fabrication, & Assembly for High Pressure

Task 3.2: High-Pressure Bundle Housing Design, Fabrication, and Testing Rigid Header Module

Standard "Rigid" Header Design

- ✓ Thermal cycling of a 2" x 36" glass reinforced epoxy potted bundle to 250°C with no failure of the tubes, potting, or seal
- ✓ Hydrothermal cycling of the 2" bundle at 200°C in 200 psig steam

Next Phase

Six pilot scale modules under construction.

Floating Header Design

- Driver: thermal mismatch between stainless steel housing and ceramic tubes yields a potential 1/8" expansion difference at the application temperature
- On hold following successful testing of "rigid" header module

Rigid Header Module (Sealing fixture integral part of the housing)

Pilot Scale Testing Module

Task 3: TMC Unit Design, Fabrication, & Assembly for High Pressure

NETL CO₂ Capture Technology Meeting – August 2016

Task 3: TMC Unit Design, Fabrication, & Assembly for High Pressure

NETL CO₂ Capture Technology Meeting – August 2016

Task 3: TMC Unit Design, Fabrication, & Assembly for High Pressure

NETL CO₂ Capture Technology Meeting – August 2016

Progress & Current Status Task 4: Pressurized Oxy-Coal Pilot System Test Preparation

20

NETL CO₂ Capture Technology Meeting – August 2016

Task 4: Pressurized Oxy-Coal Pilot System Test Preparation

- Task 4.2: Test system modifications
 - Completed design of coal feeding lift line modification
 - Completed design and BOM for syngas burnintegrated with existing tar reformer vessel
 - Burner components in fabrication

21

NETL CO₂ Capture Technology Meeting – August 2016

Schedule and Earned Value update

		BUDGET PERIOD I													BUDGET PERIOD II											
	2015									20	16						20					7				
Tasks		S	0	Ν	D	J	F	М	Α	М	J	J	Α	S	0	Ν	D	J	F	М	А	М	J	J	А	S
0.0 Pre-Award Costs																										
1.0 Project Management and Planning				M1										М2									M4			
2.0 Process Modeling and Design Evaluation																										
2.1 Process Modeling for System Design																	л:I									
2.2 CFD Simulation to Define TMC Design Parameters													/111	es	ιοι	ies). 									
3.0 TMC Unit Design, Fabrication, and Assembly for High Pressure			M1 = updated P										'MP	VIP Sod L Domon												
3.1 Spaced Tube Bundles Design, Fabrication and Testing		M2 = Budget Period I											Report		ť											
3.2 High Pressure Bundle Housing Design, Fabrication and Testing		M3 = Test Readiness Re										ep	ort	:												
3.3 TMC Unit Assembly and System Control Setup		M4 = Final Project Re									Rep	eport														
4.0 Pressurized Oxy-Coal Pilot Test System Preparation																										
4.1 Feedstocks and Raw Material Preparation																										
4.2 Test System Modifications																										
4.3 Test Plan																										
5.0 Overall Test System Installation and Shakedown																										
5.1 TMC System Installation and Control Integration with Oxy-Coal Test Rig														<mark>MЗ</mark>												
5.2 System Shakedown																										
6.0 System Performance Testing for Latent Heat Recovery																										
6.1 TMC Performance Test #1																										
6.2 TMC Performance Test #2																										
6.3 Result Summary and Future Development Directions																										
7.0 Scale-Up and Integration Evaluation for Commercial Scale																										
ENTIRE PROJECT																										

Risk management

RISK MITIGATION

- 1. Pilot plant availability
 - Schedule and coordinate with other tests
- 2. Subcontractor/vendor delays
 - Formalize deadlines, biweekly update
- 3. Labor cost exceeds estimates
 - Forecasting, contract labor
- 4. Steam supply
 - Dedicated steam generator for syngas burner
- 5. Tar reformer untested as burner
 - HP burner design experience, earlier start
- 6. TMC pressure seal & control
 - New high-pressure seal design, delta-P control

Risk management

RISK MITIGATION

- 1. Pilot plant availability
 - Schedule and coordinate with other tests
- 2. Subcontractor/vendor delays
 - Formalize deadlines, biweekly update
- 3. Labor cost exceeds estimates
 - Forecasting, contract labor
- 4. Steam supply
 - Dedicated steam generator for syngas burner
- 5. Tar reformer untested as burner
 - HP burner design experience, earlier start
- 6. TMC pressure seal & control
 - New high-pressure seal design, delta-P control

Plans for Future

Testing, development, commercialization

Testing (this project)

- We plan to test each of two TMC configurations for at least 24 hours at steady state conditions
- Key variables will be TMC inlet water flow rate and temperature
- Test results will be used to validate CFD modeling, which can then be applied to evaluate more configurations and operating modes

Future development

- Cost optimization for control and operation
- Cost optimization for membrane module manufacture
- Larger scale pilot study to evaluate commercial application

Acknowledgment

U.S. Department of Energy NETL Illinois Clean Coal Institute Media & Process Technology Smartburn LLC

26

NETL CO₂ Capture Technology Meeting – August 2016

Thanks!

Questions?

27

gti

NETL CO₂ Capture Technology Meeting – August 2016